
OFFLINE MODE
OF ANDROID APPS

 @Ajit5ingh

 ABOUT ME

 new Presenter(
 “Ajit Singh”,

 “github.com/ajitsing”,
 “www.singhajit.com”,
 “@Ajit5ingh”

)

● Why offline mode?

● What it takes to build an offline mode

● Architecture & Code

● Network factors

● Testing

● Bugs & how to solve them

● Wrap up

 AGENDA

WHY OFFLINE MODE?

● Lets understand by an example
● We can’t always get connected to internet

● Mobile networks are not stable

WHAT IT TAKES TO
BUILD AN OFFLINE
MODE

WHAT IT TAKES TO BUILD OFFLINE MODE

● UX

● Data

● Listening to network state updates

● Manage the network state

● Notifying user with the latest network state

USER EXPERIENCE

CAN NOT DO ANYTHING OFFLINE!

CAN DO SOMETHING!

CAN DO A LOT!!

DATA

DB CACHE

JSON files, sharedPreferences etc..

LISTEN FOR NETWORK CHANGE EVENTS

APP

IDENTIFYING INTERNET CONNECTIVITY

Figure out current network state using the
NetworkStateIdentifier

MANAGE NETWORK STATE

Update the network state

NOTIFYING USER WITH THE LATEST STATE

Update UI using the latest network state

OFFLINE MODE
ARCHITECTURE

ARCHITECTURE

APP

BENEFITS OF THIS ARCHITECTURE

● Event driven architecture

● App always has the copy of latest connectivity state

● Utilising less resources

● User gets notified almost immediately

CODE

10

User Permission

PERMISSION TO ACCESS NETWORK STATE

<uses-permission
android:name="android.permission.ACCESS_NETWORK_STATE"/>

10

Registering for network status
change events

LISTEN TO NETWORK CHANGE EVENT

<receiver  
 android:name=".NetworkStateChangeReceiver"  
 android:exported="false">  
 <intent-filter>  
 <action android:name="android.net.conn.CONNECTIVITY_CHANGE"/>  
 </intent-filter>  
</receiver>

Deprecated for Apps targeting to API 24

LISTEN TO NETWORK CHANGE EVENT BELOW API 21

if (belowLollipop()) {  
 ctx.registerReceiver(receiver,
 new IntentFilter(CONNECTIVITY_ACTION))

 ctx.registerReceiver(receiver,
 new IntentFilter(WIFI_STATE_CHANGE_ACTION))
}

LISTEN TO NETWORK CHANGE EVENT BELOW API 21

public class NetworkStateChangeReceiver extends BroadcastReceiver {
@Override  
public void onReceive(Context context, Intent intent) {  
 networkStateManager.refresh();  
}

}

LISTEN TO NETWORK CHANGE EVENT FOR API 21 & ABOVE

NetworkCallback networkCallback = new NetworkCallback() {  
 @Override  
 public void onAvailable(Network network) {  
 networkStateManager.refresh();  
 }  
 
 @Override  
 public void onLost(Network network) {  
 networkStateManager.refresh();  
 }  
};  
 
cm.registerNetworkCallback(networkRequest, networkCallback);

10

Managing network state

NETWORK STATE MANAGER

public void refresh() {  
 updateNetworkState();  
 broadcastNetworkChangeIntent();  
}  

networkStateManager.refresh();

10

Network state identifier

NETWORK CONNECTIVITY IDENTIFIER

NetworkInfo networkInfo = cm.getActiveNetworkInfo();  
networkInfo.isConnected();

NETWORK FACTORS

NETWORK FACTORS

WiFi Mobile Data Low Connectivity

Flight Mode

B
A
T
T
E
R
Y

Power Save Mode

Roaming

Roaming

POTENTIAL ISSUES

ARE YOU REALLY OFFLINE?

AND…

10

But Why??

 WATCH OUT!

NetworkConnectivityIdentifier NetworkCallback

App

10

Lets take a look at some of the
common mistakes while using

Android Network APIs

NETWORK CONNECTIVITY IDENTIFIER

NullPointerException!!

public boolean isConnectedToInternet() {  
 NetworkInfo networkInfo = cm.getActiveNetworkInfo();  
 return networkInfo.isConnected();  
}

NETWORK CONNECTIVITY IDENTIFIER

What about multiple networks!!

public boolean isConnectedToInternet() {  
 NetworkInfo networkInfo = cm.getActiveNetworkInfo();  
 return networkInfo != null && networkInfo.isConnected();  
}

NETWORK CONNECTIVITY IDENTIFIER

What about unwanted networks!!

public boolean isConnectedToInternet() {  
 Network[] allNetworks = cm.getAllNetworks();  
 for (Network network : allNetworks) {  
 NetworkInfo networkInfo = cm.getNetworkInfo(network);
 if (networkInfo != null) {  
 return networkInfo.isConnected();
 }  
 }  
 return false;  
}

NETWORK CONNECTIVITY IDENTIFIER

private boolean isWifiOrMobile(NetworkInfo networkInfo) {  
 List<Integer> networks = asList(TYPE_MOBILE, TYPE_WIFI);  
 return networks.contains(networkInfo.getType());  
}

WHAT DID WE DO

● Added null check for NetworkInfo

● Handled multiple networks

● Filtered WIFI and Mobile Data networks only

BE CAREFUL WITH NETWORK CALLBACK

NetworkCallback networkCallback = new NetworkCallback() { 
 @Override  
 public void onAvailable(Network network) {  
 networkStateManager.setConnectedToInternet(true);  
 }  
 
 @Override  
 public void onLost(Network network) {  
 networkStateManager.setConnectedToInternet(false);  
 }  
};  
 
cm.registerNetworkCallback(networkRequest, networkCallback);

BE CAREFUL WITH NETWORK CALLBACK

Is it good enough??

NetworkCallback networkCallback = new NetworkCallback() { 
 @Override  
 public void onAvailable(Network network) {  
 networkStateManager.refresh();  
 }  
 
 @Override  
 public void onLost(Network network) {  
 networkStateManager.refresh();  
 }  
};  
 
cm.registerNetworkCallback(networkRequest, networkCallback);

BE CAREFUL WITH NETWORK CALLBACK

NetworkCallback networkCallback = new NetworkCallback() {  
 @Override  
 public void onAvailable(Network network) {  
 networkStateManager.refresh();  
 }

@Override  
public void onCapabilitiesChanged(Network n, NetworkCapabilities nc) {  
 networkStateManager.refresh();  
}

 
 @Override  
 public void onLost(Network network) {  
 networkStateManager.refresh();  
 }  
};  
 
cm.registerNetworkCallback(networkRequest, networkCallback);

HAVE WE SOLVED ALL THE PROBLEMS?

● Power Save Mode

● Handling on different devices

● Other random connectivity issues

HANDLING ISSUES

UNDERSTANDING THE USER BEHAVIOUR

INCREASE TRIGGER POINTS

GIVE THE USER CHANCE TO GET OUT OF OFFLINE MODE

 Activity’s
onResume()

 Fragment’s
onResume() Network

 Call?

 User
 Action

TESTING

 TESTING PYRAMID

 UNIT TESTING

● Network state management logic
● Broadcasting network change event to the app

● Showing offline UI components

 INSTRUMENTATION TESTING

● Showing offline UI components on broadcast of network

change event

● Content of UI components

● Interactions with offline components

AUTOMATION TESTING

TESTING USER JOURNEYS

● When user goes online to offline

● When user comes back online

● Interactions with offline components

USING ADB TO GO OFFLINE

 MANUAL TESTING

WHY MANUAL TESTING?

● Low connectivity scenarios

● Combination of multiple networks

● Fluctuating network conditions

 TESTING IN LIFTS

 TESTING WHILE TRAVELLING

● Build something that is useful to the user
● Be careful while using android network API

● Always read the documentation of network APIs

● Understand user behaviour

● Manual testing

● Test with combination of mobile data and wifi

● Use automation testing to test offline UI components

 WRAP UP!

THANK YOU
 Questions? Feedback?

 @Ajit5ingh
www.singhajit.com

